Giá trị lượng giác flashcards

  -  
\frac{\left(\sin(A)\sin(B)\right)^{2}+\left(\sin(A)\cos(B)\right)^{2}+\left(\sin(B)\cos(A)\right)^{2}+\left(\cos(A)\cos(B)\right)^{2}}{\left(\sin(A)\sin(B)+\cos(A)\cos(B)\right)^{2}}
*

HINT: you have \tan B = \frac{n\tan A}{1 - (n-1)\tan^2A}. \tan(A+B) = \frac{\tan A + \tan B}{1 - \tan A \tan B}
The \cot(A) = 1/2, then use \csc^{2}(A) = 1+ \cot^{2}(A) to get \csc(A)= \pm \sqrt{\dfrac{5}{4}}. Depending on increasing level of trig. sophistication the answer is \sqrt{\dfrac{5}{4}} or \pm \sqrt{\dfrac{5}{4}} ...

Bạn đang xem: Giá trị lượng giác flashcards


How do you find the values of the other five trigonometric functions of the acute angle A with \displaystyle{\tan{{A}}}={3} ?
https://socratic.org/questions/how-do-you-find-the-values-of-the-other-five-trigonometric-functions-of-the-acut-5
See explanation.Explanation:First we can write that: \displaystyle{\cot{{A}}}=\frac{{1}}{{\tan{{A}}}}=\frac{{1}}{{3}} To find\displaystyle{\sin{{A}}}and\displaystyle{\cos{{A}}}we ...
Hint You are looking for the intersection of two functions y_1=\tan(x) and y_2=x. You also know that \tan(x) has discontinuities at x=(2k+1) \frac {\pi}{2} (to be more precise, as ...

Xem thêm: Trường Bùi Thị Xuân Biên Hòa, Mức Học Phí Đồng Nai, Trường Tiểu Học


https://socratic.org/questions/how-do-you-write-the-equation-tana-b-in-the-form-of-an-inverse-function
\displaystyle{{\tan}^{{-{1}}}{b}}={a} Explanation:When we write an inverse function, we are identifying the angle, whose trigonometric ratio is known.In this case as\displaystyle{\tan{{a}}}={b} ...

Xem thêm: Hấp Thụ Hoàn Toàn V Lít Co2 Vào 400Ml Dung Dịch Hỗn Hợp Gồm Naoh 1M Và Ca(Oh)2 0


You've hit on the big notational ambiguity in the notation for trigonometric functions. Usually \tan^n(x) means (\tan(x))^n. This includes negative powers: \tan^{-2}(x) = (\tan(x))^{-2} = \frac{1}{\tan(x)^2} ...
Thêm Mục
*
*

*
*
*

\left< \begin{array} { l l } { 2 } & { 3 } \\ { 5 } & { 4 } \end{array} \right> \left< \begin{array} { l l l } { 2 } & { 0 } & { 3 } \\ { -1 } & { 1 } & { 5 } \end{array} \right>
*
*

*
*

EnglishDeutschEspañolFrançaisItalianoPortuguêsРусский简体中文繁體中文Bahasa MelayuBahasa Indonesiaالعربية日本語TürkçePolskiעבריתČeštinaNederlandsMagyar Nyelv한국어SlovenčinaไทยελληνικάRomânăTiếng Việtहिन्दीঅসমীয়াবাংলাગુજરાતીಕನ್ನಡकोंकणीമലയാളംमराठीଓଡ଼ିଆਪੰਜਾਬੀதமிழ்తెలుగు