CÁCH XÁC ĐỊNH TÂM ĐƯỜNG TRÒN NỘI TIẾP TỨ GIÁC
Chuyên đề luyện thi vào 10: Tâm đường tròn nội tiếp, đường tròn ngoại tiếp tam giác và đường tròn ngoại tiếp tam giác
Bài toán xác định tâm đường tròn ngoại tiếp, đường tròn nội tiếp tam giác hay tâm đường tròn ngoại tiếp tứ giác là một dạng toán thường có trong các đề thi tuyển sinh vào lớp 10 môn Toán gần đây. Tài liệu được xechieuve.com.vn biên soạn và giới thiệu tới các bạn học sinh cùng quý thầy cô tham khảo. Nội dung tài liệu sẽ giúp các bạn học sinh học tốt môn Toán lớp 9 hiệu quả hơn. Mời các bạn tham khảo.Bạn đang xem: Cách xác định tâm đường tròn nội tiếp tứ giác
I. Cách xác định tâm của đường tròn
1. Xác định tâm của đường tròn ngoại tiếp tam giác
+ Tâm của đường tròn ngoại tiếp tam giác là giao điểm ba đường trung trực của ba cạnh tam giác
+ Trong tam giác vuông, trung điểm của cạnh huyền chính là tâm của đường tròn ngoại tiếp tam giác vuông ấy
2. Xác định tâm của đường tròn nội tiếp tam giác
+ Tâm của đường tròn nội tiếp tam giác là giao điểm ba đường phân giác kẻ từ 3 đỉnh của tam giác
3. Xác định tâm của đường tròn ngoại tiếp tứ giác
+ Tứ giác có bốn đỉnh các đều một điểm. Điểm đó là tâm đường tròn ngoại tiếp tam giác
+ Lưu ý: Quỹ tích các điểm nhìn đoạn thẳng AB dưới một góc vuông là đường tròn đường kính AB
II. Bài tập ví dụ cho các bài tập về tâm của đường tròn
Bài 1: Cho tam giác ABC cân tại A. Các đường cao AD, BE và CF cắt nhau tại H. Chứng minh tứ giác AEHF là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác đó
Lời giải:
+ Gọi I là trung điểm của AH
+ Có HF vuông góc với AF (giả thiết) suy ra tam giác AFH vuông tại F
I là trung điểm của cạnh huyền AH
Suy ra IA = IF = IH (1)
+ Có HE vuông góc với AE (giả thiết) suy ra tam giác AEH vuông tại E
I là trung điểm của cạnh huyền AH
Suy ra IA = IE = IH (2)
+ Từ (1) và (2) suy ra IA = IF = IH = IE
Hay I cách đều bốn đỉnh A, E, H, F
Suy ra tứ giác AEHF nội tiếp đường tròn có tâm I là trung điểm của AH
Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp đường tròn (O). Các đường cao AD, BE, CF cắt nhau tại H và cắt đường tròn (O) lần lượt tại M, N, P
a, Chứng minh tứ giác CEHD là tứ giác nội tiếp
b, Chứng minh 4 điểm B, C, E, F cùng nằm trên một đường tròn
c, Xác định tâm đường tròn nội tiếp tam giác DEF
Lời giải:
a, + Có AD là đường cao của tam giác ABC
Bạn đang xem: Cách xác định tâm đường tròn nội tiếp tứ giác


Xem thêm: Bài Văn Tưởng Tượng 10 Năm Sau Về Thăm Trường Cũ Lớp 9, Please Wait


Xem thêm: Dạng 3: Xác Định Một Điểm Thỏa Mãn Đẳng Thức Vectơ Cực Hay, Tìm Điểm Thoả Mãn Đẳng Thức Vectơ Cho Trước

hay EB là tia phân giác của góc FED
+ Chứng minh tương tự ta cũng có FC là tia phân giác của góc DFE
Mà BE và CF cắt nhau tại H nên H là tâm đường tròn nội tiếp tam giác DEF
III. Bài tập tự luyện các bài toán về tâm của đường tròn
Bài 1: Các đường cao AD, BE của tam giác ABC cắt nhau tại H (góc C khác góc vuông) và cắt đường tròn (O) ngoại tiếp tam giác ABC lần lượt tại I và K.
a, Chứng minh tứ giác CDHE nội tiếp và xác định tâm của đường tròn ngoại tiếp tứ giác đó
b, Chứng minh tam giác CIK là tam giác cân
Bài 2: Cho tam giác ABC có ba góc nhọn nội tiếp trong đường tròn (O; R). Ba đường của tam giác là AF, BE và CD cắt nhau tại H. Chứng minh tứ giác BDEC là tứ giác nội tiếp. Xác định tâm I của đường tròn ngoại tiếp tứ giác